

9., überarbeitete Auflage 2022

Alle Rechte vorbehalten

Die Vervielfältigung oder Übertragung auch einzelner Textabschnitte, Bilder oder Zeichnungen ist ohne schriftliche Zustimmung des Herausgebers nicht zulässig. Das gilt sowohl für die Vervielfältigung durch Fotokopie oder irgendein anderes Verfahren als auch für die Übertragung auf Filme, Bänder, Platten, Arbeitstransparente oder andere Medien.

Herausgeber: CNC KELLER GmbH, 42119 Wuppertal, Vorm Eichholz 2

Autor: Klaus Reckermann Layout, Grafik und Satz: CNC KELLER GmbH

Bestell-Nr.: HD-D-KSF-PC

Vorwort

Die Firma CNC KELLER entwickelt seit 1982 richtungsweisende Software für die CNC-Qualifizierung und werkstattnahe CAD/CAM-Programmierung. Viele tausend Kunden in fast 80 Ländern nutzen Software von KELLER.

Wir freuen uns, Ihnen mit **SYMp***lus* eine zeitgemäße Software für das Drehen und Fräsen vorstellen zu können, in der ein Einstieg in CNC, Grundbildung nach DIN, Vorbereitung auf die PAL-Prüfung, steuerungsspezifische Fachbildung und CAD/CAM unter einer einheitlichen Oberfläche vereint ist.

Die 4-stufige Bildungspyramide gliedert die Software für den Unterricht. Software und Arbeitshefte sind entsprechend aufeinander abgestimmt:

In dieser *Virtuellen 3D-Lernwelt* gibt es die Betriebsarten *Werkstatt, Maschine und Bedienung.* In der Betriebsart **Werkstatt** können Sie das Umfeld der CNC-Maschinen interaktiv kennenlernen, wie z.B. Messen und Prüfen, Spannen ...

In der Betriebsart **Maschine** können Sie die Maschine komplett auseinandernehmen und die Funktionsweise der einzelnen Bauteile interaktiv verstehen lernen.

Besonders wichtig ist auch die Betriebsart **Bedienung**: Hier können Sie fast wie an einer richtigen Maschine trainieren und dabei wichtige Erkenntnisse für die wirkliche CNC-Praxis gewinnen, bis hin zum virtuellen Crash, bei dem Ihnen tatsächlich "der Schreck in die Glieder fährt".

In dieser Bildungsstufe werden die Grundlagen des Programmierens mit G- und M-Funktionen nach DIN 66025 vermittelt. Aufbauend auf dieser Norm ist durch PAL* eine Codierung mit zusätzlichen G-Befehlen und Zyklen definiert.

Um dem Lernenden den Einstieg in die CNC-Programmierung und die Prüfungsvorbereitung so leicht und attraktiv wie möglich zu machen (darum auch der Begriff "PAL*plus*"), sind die Lerninhalte für das Programmieren in dieser Stufe in drei Teile gegliedert:

Die Betriebsart **Multimedia** erlaubt ein interaktives, selbstbestimmtes Lernen. Der Lernerfolg kann durch einen Test beliebig oft überprüft werden.

Die Betriebsart **G1 G2 G3** gibt die bestmögliche Unterstützung beim Erlernen der elementaren geometrischen Funktionen.

In der Betriebsart **Simulator** kann völlig frei programmiert und simuliert werden. Dabei ist der Befehlsumfang in bis zu 3 Lernstufen einstellbar.

Hinweis: Die Übungen in diesem Arbeitsheft basieren überwiegend auf den Prüfungsinhalten fürs 3-Achs-Fräsen, die 2009 von der PAL eingeführt wurden. Änderungen, z.B. die An- und Abfahrfunktionen betreffend, die erst seit 2020 gelten, fließen beginnend mit dieser 9. Auflage in das Arbeitsheft ein. Zum erweiterten Prüfungsinhalt für ZerspanungsmechanikerInnen (3+2 Achsen) gibt es eine Software-Erweiterung und auch ein eigenständiges Arbeitsheft.

In dieser Bildungsstufe wird die steuerungsbezogene CNC-Weiterbildung vermittelt.

Das Editieren bei den **Steuerungs-Simulatoren** geschieht mit dem einheitlichen, geführten NC-Editor, inklusive vieler Info-Bilder. In Kombination mit der anschaulichen 3D-Simulation können die jeweiligen Steuerungen optimal erlernt werden.

Mit der Bildungsstufe CAD/CAM steht ein professionelles grafisches Programmiersystem zur Verfügung, das einen übergangslosen Wechsel zur Produktion garantiert.

Im Geometrie-Teil können spielend einfach auch komplizierte Konturen grafisch unterstützt eingegeben oder aus CAD (DXF oder IGES 2D) übernommen werden.

Im CAM-Teil liegt ein Schwerpunkt auf der Nutzung der Restmengen-Erkennung: Optimale NC-Programme in kurzer Zeit bei reduzierter Maschinenlaufzeit trotz komplexer Aufgabenstellung - dank des *Grafischen Dialogs*.

Wir wünschen Ihnen viel Erfolg und Freude beim Arbeiten mit SYM*plus* - in Theorie und Simulation genauso wie beim Übergang zur realen Fertigung an CNC-Maschinen.

J. Lew

A Julian

Siegfried Keller

Klaus Reckermann

* PAL ist eine deutsche "Prüfungs-Norm" für den CNC-Bereich.

Inhaltsverzeichnis

Α	Allgemeines	4
A.1	Die vier Bildungsstufen	4
A.2	Die Betriebsarten in den Bildungstufen	5
В	Bedienungshinweise	6
B.1	Der Start-Assistent	6
B.2	Die Symbole rechts oben in der Kopfzeile	6
B.3	Zusatzfunktionen	6
B.4	Maus-Funktionen	7
B.5	Verschiedene Bedienkonzepte	7
1	Die virtuelle 3D-Lernwelt	8
1.1	Werkstatt	9
1.1.1	Rundgang	9
1.1.2	So wird gemessen und geprüft	. 10
1.1.3	Drehmoment in Theorie und Praxis	. 14
1.1.4	Mechanisches und hydraulisches Spannen	. 16
1.2	Maschine	10
1.2.1	So funktioniert dast	. 10 10
1.2.2	Die 802C-Tastatur	21
1.3	Bedienung	. 22
1.3.1	Eine CNC-Fräsmaschine bedienen	. 22
1.3.2	Programmieren und Fertigen	. 25
1.4	Den Unfällen vorbeugen	. 26
2	Programmieren mit PAL <i>plus</i>	.28
2.1	Umschaltung der Lernstufen	. 29
2.2	Die Betriebsart DIN-Multimedia / PAL-Multimedia	. 29
2.3	Die Betriebsart G1/G2/G3	. 30
2.3.1	G1 und G2/G3 mit I und J	. 30
2.3.2	G1 und G2/G3 mit R	. 30
2.3.3	Kontur zum Importieren in den PAL-Simulator	. 31
2.4	Die Betriebsart Einrichten	. 32
2.4.1	Werkzeug aufruten	. 32
2.4.2	Werkzeug anlegen	. 32
2.4.3	Magazin anlegen	. 33
2.4.4	Die Betriebsart DIN-Simulator / PAI -Simulator	. 34
2.5.1	Schnittdaten für die Werkzeuge	. 34
2.5.2	Von der Betriebsart G1/G2/G3 zum PAL-Simulator	35
2.5.3	Die Simulations-Arten	. 36
2.5.3.1	Die 2D-Simulation	. 36
2.5.3.2	2 Die 3D-Simulation	. 37
2.5.4	Programmieren OHNE Zyklen	. 38
2.5.4.1	Rechtecktasche, Kreistasche und Nuten frasen	.41
2.5.4.2	Programmieren MIT Zyklen	.4Z 13
2.5.5.1	Zyklen auf einer Ebene	43
2.5.5.2	ZI, ZA und W bei Zyklen auf verschiedenen Ebenen	.44
2.5.5.3	Fräs- und Bohrzyklen auf verschiedenen Ebenen	.45
2.5.6	Fräsen OHNE Fräserradiuskorrektur	. 46
2.5.6.1	Äquidistanten-Programmierung	46
2.5.6.2	2 Aquidistante bei nicht tangentialen Übergängen	. 47
2.5.1	Frasen MIT Fraserradiuskorrektur (FKK)	. 48
2.5.7.	Programmierung mit FRK	. 40 20
2.5.7 3	FRK mit linearer An- und Abfahrfunktion	. 50
2.5.7.4	FRK mit radialer An- und Abfahrfunktion	.51
2.5.8	Fräsen OHNE spezielle Kontur-Funktionen	. 52
2.5.9	Fräsen MIT speziellen Kontur-Funktionen	. 53
2.5.9.1	Kontur-Funktionen im Überblick	53
2.5.9.2	Kontur mit Rundungen, Fasen, Winkeln und Radien	.54
2.5.9.3	8 Kontur mit Mittelpunkt absolut und Offnungswinkel	. 55

2510	Maße inkl. Passmaß am Werkstück bestimmen	56
2.5.11	Fräsen mit Werkzeugradiuskorrektur TR	58
2.5.12	Programmteilwiederholung mit G23	59
2.5.13	Fräsen mit Werkzeuglängenkorrektur TL	60
2.5.14	Werkstück mit Kontur-Funktionen, Zyklen und Fase	61
2.5.15	Unterprogramme	62
2.5.16	Spiegeln	64
2.5.17	Polarprogrammierung	65
2.5.18	Konturtasche mit Inseln	66
2.5.19	Komplexe Werkstücke	68
2.6	Maschine Einrichten	70
2.6.1	für Einsteiger	70
2.6.2	für Fortgeschrittene	73
2.7	Aus PAL werden Späne	74
2.7.1	Allgemeines	74
2.7.2	Zyklen und Unterprogramme	75
2.7.3	Daten-Transfer	75
2.8	Prüfungs-Vorbereitung	76
2.8.1	Lückenaufgaben bearbeiten	76
2.8.2	Programm analysieren und Arbeitsplan erstellen	80
2.9	Erweiterung auf 3+2 Achsen	81
3	Steuerungssimulator	82
3.1	Überblick	83
3.2	Tastaturinfo / Multimediales Trainingsmodul	84
3.3	Vergleich der Programmierung unterschiedlicher Steuerungen	86
3.4	Programmierübungen	88
4	Programmieren im Grafischen Dialog	90
4 1	CAD/CAM bei KELLER	30 91
411	Struktur	91
4.1.2	Piktogramme für die Erstellung der Geometrie	
4.1.3	Piktogramme für die Erstellung des Arbeitsplans	91
4.2	Werkstück GEO1	
4.2.1	Programmieren mit Zyklen	92
4.2.2	Grafisches Programmieren	93
4.2.2.1	Erstellen der Geometrie GEO1.	93
4.2.2.2	Erstellen des Arbeitsplans CAM1	94
4.2.2.3	Zeitersparnis durch automatische Restmengen-Erkennung	95
4.3	Werkstück GEO2	96
4.3.1	Erstellen der Geometrie GEO2	97
4.3.1.1	Erstellen der Kontur	97
4.3.1.2	Erstellen der Kreistasche und der Kreisinseln	99
4.3.1.3	Erstellen des Bohrbildes	99
4.3.2	Erstellen des Arbeitsplanes CAM2	100
4.3.2.1	Flachen schruppen	100
4.3.2.2	Zontrioron und Pohron	102
4.3.2.3 1 1	Workstück GEO3	103
т. т ЛЛ1	Frstellen der Geometrie GEO3	104
442	Erstellen des Arbeitsplans CAM3	103
4.5	Vom Arbeitsplan zum NC-Programm	110
4.6	Vom NC-Programm zur Maschine	111
4 7	Übungen	112
4.8	Übernahme von CAD-Daten	.114
4.8.1	Geometrie übernehmen	.114
4.8.2	Arbeitsplan	.116
4.9	Arbeitsschritt Teilkontur	.117
Taeta	turbelegung der <i>plus-</i> Systeme	112
Sach	wortverzeicnnis	.119

1.2.2 So funktioniert das!

	Konsol- Fräsmaschine	Kreuztisch- Fräsmaschine
+X		
-X		
+Y		
-Y		
+Z		
-Z		

Kugelgewindetrieb

Zentralschmierung / Stick-Slip-Effekt

Pneumatikeinheit / Werkzeugspanner

Vergleichen Sie Zuluft und Abluft:

Vorteile:

Indirektes Mess-System

Bedienung 1.3

1.3.1 Eine CNC-Fräsmaschine bedienen

Bedienung

Wechseln Sie mit **und** und **in die Betriebsart Bedienung**.

Hier können Sie die Maschine in einer vorgegebenen festen Reihenfolge einrichten.

Wenn Sie nicht weiter wissen: Den Mauszeiger auf 👔 setzen, dann wird Ihnen angezeigt, wie es weitergeht.

Einschalten

(Falls der o.a. Ordner nicht aktiv ist, müssen Sie

diesen mit **F1** Ordner aktivieren)

DIN1

F10

Die Betriebsart Einrichten 2.4

Zur Anlage/zum Ändern von Werkzeugen mit 🌉 und

Einrichter

in die Betriebsart Einrichten wechseln!

F8

Einrichten

2.4.1 Werkzeug aufrufen

Rufen Sie im Menü F1 Werkzeuge - F2 Ändern auf.

Mit F1 Sortierung umschalten können Sie zwischen der Sortierung nach Werkzeug (-Name) oder Typ umschalten. Alternativ können Sie auf die Fläche oberhalb der Spalten klicken. Mit Mausklick auf die aktive Fläche (Symbol ▲ bzw. ▼) wird die Sortierung umgedreht.

Anmerkung: Wenn in CAD/CAM ein Arbeitsplan aktiv ist, wird bei einigen Werkzeugen ein Stern vor dem Werkzeug angezeigt. Das bedeutet, dass dieses Werkzeug im Magazin des aktiven Arbeitsplans verwendet wird.

Mit F2 Auswahl ändern F6 Alles herausnehmen, z.B. Anwahl Schaftfräser und F1 Typ hinzufügen können Sie sich die Untermenge eines Werkzeugtyps anzeigen lassen (hier z.B. alle Schaftfräser).

2.4.2 Werkzeug anlegen

Rufen Sie im Menü **F1** Werkzeuge \rightarrow **F1** Neu auf.

Am Beispiel eines Spiralbohrers soll ein Werkzeug angelegt werden:

Werkzeug-Typ auswählen

- Namen und Eigenschaften festlegen
- Geometrie eingeben
- · Bearbeitung ggf. einschränken
- ·Bei Technologie die Schnittdaten eingeben.

Diese Schnittdaten werden bei CAD/CAM bei Verwendung dieses Werkzeugs im Arbeitsschritt automatisch vorgeschlagen.

2.5.7.3 FRK mit linearer An- und Abfahrfunktion

Das An- und Abfahren an Konturen mit G41/G42 wurde bei PAL um sehr hilfreiche Funktionen ergänzt. Mit G45 zusammen mit G41/G42 bzw. G40 kann eine Kontur linear tangential an- bzw. abgefahren werden.

Vergleichen Sie mit Seite 49 und fassen Sie zusammen:

2.5.12 Programmteilwiederholung mit G23

Zum Schruppen wird die Kontur mit Radiuskorrektur praxisgerecht mit TR0.5 umfahren. Zum Schlichten wird die Kontur erneut mit Radiuskorrektur umfahren, und zwar ohne Radius-Aufmaß. Dazu können die Verfahrsätze mittels der Funktion G23 wiederholt werden.

Ν	OHNE Programmteilwiederholung			N	teilwiederholung		
N1	G54			N1	G54		
N2	T2 F480 S1000 M13 TR0.1			N2	T2 F480 S1000 M13 TR0.5		
;	Konturfräsen mit Aufma	ß	.,		Konturfräsen mit Aufmaß		
N3	G0 X135 Y-15 Z1	Startposition		N3	G0 X135 Y-15 Z1	Startposition	
N4	G0 Z-5	Frästiefe in Z		N4	G0 Z-5	Frästiefe in Z	
N5	G41 G45			N5	G41 G45		
N		Kontur-Beschreibung		N		Kontur-Beschreibung	
N17	G40 G45]		N17	G40 G45		
;	Schlichten ohne Aufmaß	3		;	Schlichten ohne Aufma	ß	
N18	TR0			N18	TR0		
N19	G0 X135 Y-15 Z1	Startposition		N19	G23 N3 N17		
N20	G0 Z-5	Frästiefe in Z		N20	G0 X150 Y150 Z100 M	9	
N21	G41 G45			N21	M30		
N	Kontur-Beschreibung						
N33	G40 G45]	Das NC-Programm wird durch G23				
N34	G0 X150 Y150 Z100 M9)					
N35	M30						
Prax	Praxis an der CNC-Maschine						
Beim Messen nach dem Schruppen ergibt sich der Messwert 71.02 mm . Welcher Wert muss für TR beim Schlichtschnitt eingegeben werden, damit die Kontur maßhaltig wird? Kreuzen Sie die richtige Lösung an:							
+0.01 -0.01 +0.51 -0.51 +1.02 -1.02							
Easen der Kontur							

Die Kontur soll eine Fase der Breite 1 mm erhalten. Dazu wird die Kontur zusätzlich mit dem NC-Anbohrer auf Station 1 umfahren.

Der NC-Anbohrer hat einen Spitzenwinkel von 90° und eine Querschneide von 1 mm.

Die Querschneide soll einen Abstand von 1 mm von der Kontur haben.

Auf welcher Tiefe muss der NC-Anbohrer die Kontur umfahren, damit eine Fasenbreite von 0.75 mm entsteht?

Ν	Programm			
N				
N21	T1 F220 S3500 M13 TR1			
;	Fasen der Kontur			
N22	G0 X1	G0 X125 Y-15 Z1 Startposition		
N23	G0 Z	G0 Z Frästiefe in Z		
N24	G23 N5 N17			
N25	G0 X150 Y150 Z100 M9			
N26	M30			

Anmerkung: Beachten Sie bei der Programmteilwiederholung in Satz N24, dass mit dem Satz N5 statt N3 begonnen wird, damit die richtige Frästiefe verwendet wird!

2.5.16 Spiegeln

Symmetrische Werkstück-Geometrien lassen sich vereinfacht programmieren, indem man die Bearbeitung nur einmal programmiert und dann gespiegelt wiederholt.

G66 X

Die nachfolgende Bearbeitung wird an der X-Achse gespiegelt, d.h. es ändern sich die Vorzeichen der Y-Werte.

G66 Y

Die nachfolgende Bearbeitung wird an der Y-Achse gespiegelt, d.h. es ändern sich die Vorzeichen der X-Werte.

G66 XY

Programmiert man G66 mit beiden Adressen, wird auch an beiden Achsen gespiegelt. Dies entspricht einer Drehung um 180°

G66

Mit G66 ohne Adressbuchstaben wird die Spiegelung aufgehoben und es gilt wieder das ursprüngliche Koordinatensystem..

Wird an nur einer Achse gespiegelt (G66 X, G66 Y) werden die Bedeutung von G2/G3 und G41/G42 vertauscht. Beim Schlichten wird also aus Gleichlauf Gegenlauf und umgekehrt. Will man das aus fertigungstechnischen Gründen vermeiden, ist die CAD/CAM-Programmierung eine praktische Alternative (siehe Kapitel 4), weil dabei nur die Geometrie gespiegelt wird und die Bearbeitung einheitlich im Gleichlauf erfolgen kann.

Werkzeug: Fräser Ø10 mm

Übung 25 Erstellen Sie das Hauptprogramm zu dieser Zeichnung. Verwenden Sie für die eigentliche Bearbeitung das Unterprogramm von Übung 24.

Ν	NC-Programm		Kommentar				
N1					Nullpunktverschiebung		Nullpunktverschiebung
N2			WerkzeugaufrufØ16				
N3	G59		G59 NPV auf die Spiegelach		NPV auf die Spiegelachse		
N4			Startposition anfahren				
N5			Unterprogramm-Aufruf				

Ν	NC-Programm	Kommentar
N6		Spiegeln
N7		Startposition anfahren
N8		Unterprogramm-Aufruf
N9	T0 M30	Programm-Ende

V = 106.829 cm³

Dann wird die Maschine geladen, die Sie schon aus der 3D-Simulation kennen. Weil Sie "für Einsteiger" gewählt haben, lesen Sie in einem Textfenster (wo in der Simulation die NC-Sätze stehen), was als nächstes zu tun ist.

Schalten Sie die Maschine ein

Fahren Sie zum Referenzpunkt

Führen Sie danach alle weiteren Schritte gewissenhaft aus, bis das Koordinaten-Dreibein korrekt platziert ist.

Anders als in der Virtuellen Werkstatt, wo Sie das Antasten mit einem "klassischen" 3D-Taster mit Messuhr geübt haben, verwenden Sie hier ein elektronisches Tastsystem (Vorlage von HEIDENHAIN), das – wenn man langsam genug anfährt – die Werkstückberührung automatisch erkennt und stoppt*.

* An einer echten Steuerung würde man dafür auch einen Messzyklus verwenden können, der – nach einer groben Vorpositionierung durch den Anwender – alle weiteren Verfahrwege automatisch ausführt und auch den Kugelradius des Tastsystems automatisch verrechnet. Hier ist zum Üben doch nochmal etwas Handarbeit gefragt …

Außerdem kann man hier gezielt günstige Ansichten aufrufen.

Anmerkung: Es muss immer nur der Wert für die Achse eingegeben werden, in der angetastet wurde..

3.1 Überblick

In der gelben Stufe der SYM*plus*-Software haben Sie die Grundlagen der DIN/ISO-Programmierung und beispielhaft weitere Befehle und Zyklen nach der deutschen Prüfungsnorm PAL kennengelernt.

Da nach DIN/ISO nur wenige G- und M-Befehle festgelegt sind, hat (wie PAL) auch jeder Steuerungshersteller zusätzlich (oder sogar abweichend) eigene Codierungen festgelegt. KELLER hat für viele aktuelle und auch ältere Steuerungen Simulatoren entwickelt, mit denen man diese individuellen Codierungen programmieren und simulieren kann.

Hier eine Auswahl:

Je nach Lizenz können Sie in der Stufe "STEUERUNGEN" einen Simulator oder mehrere dieser Simulatoren aufrufen und nutzen, einige auch mit 3+2 Achsen. Der gerade aktive Simulator wird Schwarz auf Grau direkt unterhalb der Hauptmenüzeile angezeigt.

Einen anderen Simulator auswählen können Sie entweder über *Datei* > *Steuerung* oder bei Verwendung des Startassistenten auch über *Datei* > *Neu*.

K	EIIER 🌛 SIMULA	TOR
	Datei Bearbeiten	
F1	Neu	
₽2	Einstellungen	
FЗ	Öffnen	
F4	Speichern	
F5	Verwaltung	
F6	Drucken	
87	Exportieren	
F8	Postprozessor-Parameter	
F9	Steuerung	

Was wollen	m Sie machen ?	
	Neue Datei erstellen	-
	als	
	Hauptprogramm	-
	für	
	SINUMERIK 810D/840D	•
	Erweiterte Einstellungen Ja	
Abbrec	hen	F10

4.1.2 Piktogramme für die Erstellung der Geometrie

Weil die Erstellung von Konturen mit diesen Piktogrammen sehr einfach ist, kann dieser *Grafische Dialog* auch als Einstieg in die CNC-Technik genutzt werden.

4.3.2 Erstellen des Arbeitsplanes CAM2

•

•

Veiter

F10

V

F1 Datei > F1 Neu > ...

Neue Datei erstellen

Erweiterte Einstellungen Ja

Arbeitsplan Was wollen Sie machen?

Abbrechen

Über F4 Spannen > F1 Spannmittel > F4 Beliebig > F1 Spannmittel > F1 Ordner > "Spannmittel" markieren > F10 OK > "CAM-150" > 4 x F10 die Datei mit Backen rechts/links und Parallelleisten wählen! (Kollisionsgefahr besteht aber nicht, das ist nur für die Optik.)

4.3.2.1 Flächen schruppen

1. Taschen fräsen

2. Werkzeugwahl

F1 Erstellen > F1 Fläche > F1 Fertigteil:

Die rote Fläche zeigt, was das Werkzeug auf T2 (das erste Fräswerkzeug für Flächen im Magazin) bearbeiten könnte.

Offenbar ist es aber zu groß, um in die Kreistasche eintauchen zu können. Darum versuchen wir's mit einem kleineren Werkzeug ...

F1 Magazin > T4 wählen (Schaftfräser Ø 16mm / Z=5)

Die Konturtasche bleibt als ausgewählte Fläche rot markiert. Aber die Graufärbung der Kreistasche zeigt, dass dieser Fräser auch diese bearbeiten kann.

3. Oben rechts im 2. Dialog sehen Sie, dass die *Soll-Tiefe* der rot markierten Fläche -5 ist. Es sollen aber noch mehr Flächen gefräst werden:

F1 Mehrfach aufrufen, mitten in die Konturtasche klicken und die Fläche auf der Tiefe -10 mit *F1 Hinzufügen* aktivieren. Dann die Kreistasche ebenfalls markieren und hinzufügen.

Weiter mit 🚩 und zur Kontrolle Anzahl der Flächen prüfen:

Anzahl	der	ł	lächen
3			

4. Die Einstellungen in den nächsten Dialogfenstern unverändert übernehmen:

Auf der Tiefe -10 bleibt Restmaterial stehen!

Fon 0202 4040-0 info@cnc-keller.de

fb.cnc-keller.de www.cnc-keller.de